100=a^2+7^2

Simple and best practice solution for 100=a^2+7^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=a^2+7^2 equation:



100=a^2+7^2
We move all terms to the left:
100-(a^2+7^2)=0
We get rid of parentheses
-a^2+100-7^2=0
We add all the numbers together, and all the variables
-1a^2+51=0
a = -1; b = 0; c = +51;
Δ = b2-4ac
Δ = 02-4·(-1)·51
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*-1}=\frac{0-2\sqrt{51}}{-2} =-\frac{2\sqrt{51}}{-2} =-\frac{\sqrt{51}}{-1} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*-1}=\frac{0+2\sqrt{51}}{-2} =\frac{2\sqrt{51}}{-2} =\frac{\sqrt{51}}{-1} $

See similar equations:

| (x/8)=(5/12) | | 8−3(x−2)=2 | | 10^x=40 | | 4=a=15 | | 5x-10=-7 | | 2(a+4)+.5a=23 | | 14+2x+7x-5=63 | | 4/(x-1)-4/x(x-1)=x+3 | | 4x-2(x+10)=12 | | -4(y-8)=3y-9 | | -8+10k=82 | | 23-7x(x-3)+5x=10 | | 3u+9-8u=−31 | | -4y+32=3y-9 | | x(x+2)/x+1=0 | | -3x+16-7=15 | | -5x+20=3x-13 | | 7x(3+2x)=0 | | 5/8=4/n | | 15x^2-8x+42=0 | | 2(x)+4=10 | | -11+10(p+10)=4-5(2P+11 | | 3x+2+4+5-1=0 | | 4+3=x+2 | | 10d^2+33d+20=0 | | (2x-1)*(4x+5)=0 | | 1(b+4)=36 | | (10y+y)y=17 | | 20x+18=7x | | 2+9=6+x | | 4(z−1)+1=21 | | -.33(9x+42)-5x=-70 |

Equations solver categories